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• Where does the water go with floodplain inundation? This phase looks at the 

overall mass balance throughout all pathways: evaporation, infiltration and 

recharge.

• What are the management considerations for environmental water to get the 

best ecological benefit?

• Can this help us optimise how we deliver water for the environment?

• Groundwater models estimate river salinity and risk of floodplain salinization

- They are sensitive to inundation recharge rates, but these are poorly constrained by data

- Need data!

Why?
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• Introduction

• Site selection and set-up of the IoT monitoring system

• Field monitoring results

• Large column testing on the wetting and drying of the floodplain soils

• Numerical modelling on the dynamics of water and salt during e-watering

• Conclusion

Outline
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Environmental watering
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Pond storage (pressure transducer) + unsaturated zone storage (moisture sensor) = Pump inflow (water 

meter) + Rainfall (weather station) – ET (weather station) – Recharge (piezometer)

Mass balance:



| Geotechnical Engineering Centre

Field site at Murtho-Weila connector
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Idealised site for field monitoring

• Circular shape

• Initially dry

• Situated within a private 

property

• Covered by vegetation
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Desiccation and cracking of the Coonambidgal Clay
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Floodplain cross-section and unconfined Monoman aquifer
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Soil samples extracted during the drillings of bores 
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Coonambidgal clay Monoman sand
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IoT Instrument deployment
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(a) SA1 outside of the pond (b) (c) SA2 Centre of the pond (d)

(e) Toe of the highland (f)
All data are delivered to the web in real time, which is 

particularly useful during the travel restriction period
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Installation of moisture sensor array
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Pump set-up
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(a) Diesel pump with a capacity 

of 6 ML/Day

(b) 200-long lay flat hose to convey 

water to the basin 

（c）

(b) Flow outlet over a geofabric
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Changes from underlying flow tunnels to open channels 
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“Water serpent” visible at the onset of the e-watering
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17/Mar/2021

From walking track :13,088 m2

From aerial images: 12,552 m2

From lidar: 6,852 m2

18/Mar/2021 16:00

From walking track :23,070 m2

From aerial images: 23,549 m2

From lidar : 18,496 m2

19/Mar/2021 11:30

From walking track :32,362 m2

From aerial images: 31,201,m2

From lidar : 30,224 m2

20/Mar/2021 16:00

From walking track :35,615 m2

From aerial images: 33,226 m2

From lidar: 33,476 m2

21/Mar/2021 09:00

From walking track :38,915 m2

From aerial images: 34,695m2

From lidar : 35,484 m2

24/May/2021 16:30

From walking track :40,425 m2

From aerial images: 36,020m2

From lidar : 34,252 m2

26/May/2021 09:00

From aerial images: 39,129m2

From lidar : 37,868 m2

(a) (b) (c) (d)

(e) (f) (g)

Verification of Digital Elevation Model
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Hydraulic conductivity of the clay versus surface water depth
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Water balance
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– Note the Y-axis is in log scale. – Cation concentrations at all bores decrease over time due to mixing.
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– Note the Y-axis is in log scale. – Anion concentrations at all bores decrease over time due to mixing.
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Vegetation Responses
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Aerial image of the water-inundated basin on 17/Mar/2021 

(a) and 25/May/2021 (b)
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Field condition after depletion of the pond (Oct / 21)
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Laboratory column set-up for the wetting and drying of 
Coonambidgal Clay
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Heating lamp

Camera1

Camera 2 Fan
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How representative is the findings from this study to the 
inundation recharge across the whole floodplain?
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Doble, R., Walker, G., & Simmons, C. (2005). Understanding spatial patterns of discharge in semi-arid regions using a recharge-

discharge balance to determine vegetation health. CSIRO Land and Water Technical Report 13/05, July.

• Saline water table in the Monoman 

Sand tends to be confined in the 

upper floodplain, while unconfined 

near the river.

• Inundation recharge to the aquifer 

could be more significant on the 

floodplain near the river
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Mapping of the confined/unconfined Monoman Sands
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• Green suggests a unconfined aquifer, Red suggests a confined aquifer

• Unconfined aquifer tends to be located near the river, while confined aquifer tends to be situated at the 

upper floodplain
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• The presence of roots and cracks in the 6-m-thick Coonambidgal Clay enhance 

inundation infiltration. The infiltrated water then transport laterally to the bulk clay

• The ratio of infiltration to ET is 2:1 during the first e-watering, and 1:1 during the 

second e-watering.

• The Coonambidgal Clay acts as a predominant e-water reservoir for vegetation 

growth, with a storage capacity much higher than the surface water pond.

• The chemistry, groundwater temperature and groundwater head all suggest 

recharge to the confined water table. The presence of a aquitard reduces the 

recharge to the underlying Monoman Sand aquifer to be less than 2 mm/day, and 

the rate is likely to be further reduced at repeated inundation. 

• Future investigations should upscale the analysis to a floodplain level, and focus on 

inundation recharge near the river bank where the saline aquifer is unconfined.

Conclusion and Recommondation
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Thank you for your 

attention!

If you have further 

questions, please contact:

Woods, Juliette (DEW):

juliette.woods@sa.gov.au; 

Creeper, Nathan (DEW):

nathan.creeper@sa.gov.au;

Jess Thompson (MDBA): 

jess.thompson@mdba.gov.au;

John Hutson (Flinders):

john.hutson@flinders.edu.au;

Chenming Zhang (UQ): 

chenming.zhang@uq.edu.au; 
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